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5 The Shapley Value

5.1 The Problem of the Commons and Two Examples

A commons is a technology used jointly by a given set of agents; the problem of the commons
is to organize fairly and efficiently the exploitation of this technology. The microeconomic
approach to distributive justice puts this problem at the top of its agenda: the Shapley
value is an axiomatic solution to a simple model of the commons. Indeed, no systematic
discussion of the commons problem was possible until the tools of (cooperative as well as
noncooperative) game theory became available fifty years or so ago.

Joint ventures requiring coordinated action of partners with heterogeneous expertise are
typical commons. The partners contribute their labor input and share the output (profit)
generated by the enterprise. Examples include musical ensembles (example 2.4), law firms,
and fishing or farming cooperatives.

The interesting question of distributive justice is to assess fairly the productive contribu-
tions from the various partners: recall the musical duo, example 2.4, where the two musicians
are not equally famous. Similarly the fishermen may use various fishing techniques, with
different impact on the future stock of fish; the partners in a law firm bring different kinds
of expertise that are unequally scarce, and so on.

The sharing of joint costs falls squarely within the scope of the commons problem.
In a cost-sharing model the agents demand certain services that are jointly produced by
the technology (the commons), and they must share fairly the total cost of meeting these
demands. A typical example (see example 5.6) is access to a network; each agent wants
to be hooked to the central server but the connection cost is not uniform: some agents live
near the server and need only a short cable, some agents are close to one another, another
source of savings, and so on. This chapter and the next one are entirely devoted to cost-
sharing problems like this one, and to the “dual” surplus-sharing problems where each agent
contributes some productive input and the question is to share the resulting total output.

In terms of the general principles stated in section 2.1, the focus of this chapter is almost
exclusively on the interpretation of reward: What is a fair assessment of individual respon-
sibilities in the formation of total cost (or surplus)? Compensation is entirely absent from
the discussion, and we always assume equal exogenous rights.! Fitness is not an issue in
most of the chapter, where we assume inelastic demand of output or supply of input. That
is to say, willingness to pay for the output or reservation values for providing the input play
no role. The only exception is section 5.4, a prelude to the models of chapters 6 and 7. In
the next chapter, by contrast, fitness is a paramount concemn and the simultaneous pursuit
of fitness and reward is the heart of the discussion.

1. Nevertheless, the axiomatic discussion of section 5.5 can be extended to accommodate asymmetric rights.
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Example 5.1 Joint Venture: Example 2.4 Revisited The formal model is identical to that
of example 2.4, namely two agents must share a given amount of some divisible commodity,
and the division takes only into account two individual characteristics. The interpretation is
quite different: the goal is to share the cost of providing a certain service to our two agents,
and the individual parameters are the stand-alone costs, namely the cost of providing service
to one agent alone.

Teresa and David share an office space and need to connect their computer to the network.
Teresa needs a small capacity link for which the company charges ¢y, whereas David needs
a larger one that costs ¢, ¢) < ¢. There is a single cable outlet in the office, and in order
to connect both of them, the company must install an additional outlet at cost . Thus the
total bill to equip both Teresa and David is cj2 = ¢; + ¢; + 6. We call ci,i = 1,2, the
stand-alone costs of our two agents: if David is out of the picture, no extra outlet is needed
and Teresa will pay c;.

Formally we have a distribution problem as in section 2.2 where a bad (cost ¢)2) must be
shared and total burden exceeds the sum of individual liabilities. Which one of our three
basic solutions—proportional, equal benefits, and uniform gains—if any, should we use?

Suppose that the company is running a promotional campaign for the small capacity link
that Teresa needs, so that her stand-alone cost is ¢, = 0. In this configuration the proportional
solution is highly unappealing because it charges the entire cost ¢, +3 to David, when surely
Teresa should bear a share of the mutual externality 3.

The uniform gains solution—which should be called uniform costs in the context of our
example—is even worse in that it seeks to equalize cost shares irrespective of the difference
in stand-alone costs. For instance, if c; = 0 as above, the solution charges y, =4 to Teresa
and y2 = ¢, to David as long as § < c; it charges %(8 + ¢3) to both whenever & > c,.
The former is unpalatable because David contributes nothing to the cost & of the mutual
externality. The latter is too, because Teresa becomes responsible for half of David’s stand-
alone cost c;.

The equal surplus solution is the only sensible way to share costs in this context, since
¢i is clearly a separable cost. It simply splits equally the nonseparable cost 8, and charges
n=ci+(/2), y=ca2+(/2).

Now we change the story to one where the cost of connecting Teresa and David is
smaller than the sum of their two stand-alone costs. This is called a deficit configuration
in section 2.2, and a subadditive cost function in this chapter: ¢13 < ¢ +c3. In the previous
story the cost function is superadditive: c;2 > ¢; + ¢, see section 5.3.

The company charges a fee §; to set up a link, and this fee increases with the capacity of
the link. Here 8, < &, as Teresa needs less capacity than David.

In addition the consumer must pay a flat fee § for the technician’s visit: this fee is the
same no matter how many links the technician sets up in his visit. By joining their orders,
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Teresa and David save one fixed fee. The stand-alone costs are ¢; = 8; + 8 fori =1, 2, and
the total costis ) =8, + 8+ 8 < ¢; + 3.

The uniform costs solution is as unappealing as above, for it ignores the difference
between §; and 8,.2 The proportional solution splits the cost-saving § in proportion to the
stand-alone costs §; + §, which is an unpalatable compromise for exactly the same reasons
as above. For instance, if 8; and § are comparable, but &, is much larger than both, Teresa
gets essentially no rebate from her stand-alone costs.>

The uniform savings solution (i.e., the uniform losses solution of section 2.2) is the only
sensible solution in the subadditive cost case. It splits the cost-savings & equally between
David and Teresa: y; = &; + (8§/2), y» = & + (8/2).

The discussion of example 5.1 suggests a general cost-sharing method, based on the
computation of n + 1 numbers if the number of agents sharing the commons is n. Let c;
be agent i’s stand-alone cost and cy be the total cost of serving the whole population N.
We compute individual cost shares by the equal surplus/uniform cost-saving methods of
section 2.2. Thus, if the costs are superadditive, cy > > ; €j» each agent i pays her stand-
alone cost ¢; plus a surcharge equal to her fair share of the cost externality cy — Y jci If
costs are subadditive, cy < ) j €j» everyone pays her stand-alone costs minus a common
rebate, or pays nothing at all if this difference is negative:

1
CNZZCJ':)’I'=C,’+; CN‘—ZCj fori=12,...,n

J J (1)
cN 520,- = y;i = (¢; — p)+ where Z(cj — Wi =cwN fori=1,...,n
J J

These cost shares are simple and intuitive, and in example 5.1 they deliver the correct
solution. In the case of a two-person problem, the cost shares (1) take the simple form of
an equal rebate for both users, provided that we make the reasonable assumption ¢; < ¢,
fori = 1,2; namely serving both agents cannot be cheaper than serving only one. In the
subadditive case, this assumption implies that the common rebate y is below ¢; fori = 1, 2.
Therefore, in bath cases—superadditive and subadditive—the cost shares are simply

Y =%(C|2+C| -Q), = %(C|2+C2_Cl) 2

2. This is provided that § > §; — &). When 8 < 8; — §,, the solution is even worse: it charges her stand-alone
cost &) + § to Teresa, and David gets the full saving of one fix fee—he pays ;.

3. Splitting the cost saving 4 in proportion to the capacity costs &; would give essentially aﬁh} rebate to Teresa
under the same premises, which is an equally unjustified outcome. —
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Figure 5.1
Mail distribution: Example 5.2

Our next example shows that things are not as simple when the cost must be shared

among three or more users of the commons; in fact the cost shares (1) may be altogether
unacceptable.

Example 5.2 Mail Distribution Five villages share the cost of a daily mail distribution.
The mail is dropped daily by an outside carrier in a certain location . The villagers jointly
hire a local distributor who picks the mail from 2, delivers it to the five villages, where
he picks the outgoing mail, and goes back to Q. We neglect all sorting costs (the mail is
dropped at 2 in five presorted packages). The local distributor’s charge is proportional to
the distance he must travel daily, and the price is $1 per kilometer.

The five villages are located along the single road starting at  and passing successively
through A, B, D, E, and F. Distances, in kilometers, are indicated on figure 5.1. Thus the
daily tour from 2 to F and back costs $110. The problem is to divide it fairly among our
five customers.

The stand-alone costs—costs of delivering mail to agent i only—are as follows:

€a=20, cg=30, ¢p=90, cr=100, cr=110
Therefore the formula (1) gives 12 = 63.3 and the following cost shares:
XA =X = 0, Xp = 26.7, Xg = 36.7, XF = 46.7

This is obviously too soft on agents A and B who should bear a positive share of total cost!

We note that a division of the total cost 110 in proportion to the stand-alone costs above is
plausible in this numerical example. However, in section 5.3 we show that the proportional
solution may give unreasonable cost shares in a similar example with different distances;
see example 5.4.

A simple separation argument leads to a genuine division of costs, which the Shapley
value also recommends (as shown in the next section). The idea is to consider each interval
such as BD separately and to split the corresponding fraction of total cost only among
those agents who are responsible for it. For instance, the cost of covering the interval
[E, F] should be imputed to F alone. By the same token, the cost of [D, E] should be split
equally between E and F for this cost must be covered as soon as any of them receives
mail, that of [B, D] should be split three ways among D, E, and F, and so on. Hence we




have the following cost shares:
xp=320=4, x3=xa+310=65, xp=xz+160=265
xg=xp+310=315 xr=xg+10=415

The cost structure of example 5.2 appears in many contexts. The line may represent
an irrigation ditch from the source O (river) to its end point E, and we must share the
maintenance cost of the canal (taken to be proportional to its length) among the different
farms, A, B, ...located along the canal.

More generally, consider the cost of building the capacity of a common facility. The
length of a runway increases in the size of the planes that use it, the depth of a harbor
increases in the size of ships, or the cost of a network increases with the bandwidth of a
link. In each case agent i requires a capacity that costs ¢; to build, and the stand-alone cost
of building the capacity required by the set of agents S is

CS) = max ¢; 3)

For the technology (3) the separation argument of example 5.2 is casily adapted, Order
the agents by increasing capacities, say ¢; < ¢y < --- < ¢,. Note that the cost of serving §
never exceeds c,—) if § does not contain agent N, and always surpasses ¢,_, by ¢, — €n1
if § does contain this agent. Therefore assign the cost of increasing capacity from the level
required by agent n — 1 to that required by agent n, to agent » only. Split similarly the cost
€a—1 — Ca—2 Of increasing capacity from level n — 2 to level n — 1, equally among agents
(n — 1) and n, and so on. The final cost shares are as follows:

1
X = ;Cly X2 =x1 +

(c2—c1), x3=x2+

— n_z(C3—Cz)

@

1 1 1
Xn =Cp — (Ecn—l + 6"}:—2 +-o 4 nn — l)cl)

5.2 The Shapley Value: Definition

The basic model of the commons that is the subject of the current chapter was introduced
more than fifty years ago in von Neumann and Morgenstern’s Theory of Games, and is
known in the jargon of that theory as the model of cooperative games with transferable
utility. In the cost-sharing interpretation, the model specifies the set N ={1,2, ..., n} of
agents who each want one unit of “service,” and for each nonempty subset S of N (also called
the coalition § of agents) a stand-alone cost C(S) of serving the (agents in) coalition S.

5.2 The Shapley Value: Definition
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For instance, in example 5.2, “service” is mail delivery and C(S) is the cost of the smallest
tour passing all i in § (ignoring the agents in N\S altogether). Thus the cost function C
itself is the commons, the technology shared by all agents. The problem is to divide fairly
the cost C(N) of serving everyone when fairness is meant to reward the responsibility
of the various agents in the total cost. Unlike formula (1), the Shapley value takes into
account the stand-alone costs of all coalitions S containing more than one but fewer than »
agents.

In the surplus-sharing interpretation, the number C(S), often denoted v(S), represents the
efficient revenue (measured in money, or in some other numeéraire) that the agents in § can
generate by some unspecified manner of cooperation. The problem is to divide total revenue
v(N) by taking fairly into account the revenues v(S) that various coalitions generate when
standing alone. Two fundamental examples are the commons model of chapter 6, where
v(S) takes into account both the benefits and costs of production when the agents in S
use the commons efficiently, and the exchange economy in chapter 7 where the agents are
buyers or sellers and v(S) is the total trading surplus of coalition S, meaning the net total
benefit when the buyers and sellers in S trade optimally their own resources.

All examples in sections 5.1, 5.2, and 5.3 are cast in the cost-sharing framework. The
examples in section 5.4 illustrate the (more subtle and more general) surplus-sharing model,
as a prelude to its systematic application in chapters 6 and 7.

The Shapley value translates the Reward principle into an explicit division of C(N)
based on the 2" — 1 numbers C(S), for all nonempty coalitions S. Formally this resembles
the deficit or excess sharing problem of sections 2.2 through 2.4, where the division of ¢
units of resources is based on the n numbers x; (the claims, or demands). Yet the jump in
mathematical complexity from n + 1 to 2" — 1 numbers is considerable, and the simple
principles of proportionality, equal gains or losses cannot be generalized.

Example 5.3 Two Simple Three-Person Problems Each of three agents Ann, Bob, and
Dave want a “service,” and we have determined the following seven stand-alone costs:

C(A,B,D)=120, C(i)=60 fori =A,B,D (5)
C(AB) =C(AD) =120, C(BD) =60 6)

Notice that we write C (¢) for the stand-alone cost of agenti, whereas the notation ¢; was used
in examples 5.1 and 5.2. The new notation is heavier but more transparent once all stand-
alone costs play a role. The cost-saving 3C(i) — C(ABD) = 60 should not be divided
evenly because the cost of serving each of the three pairs ij reveals more externalities
between Bob and Dave than between Ann and either Bob or Dave.
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Imagine that service consists of a cable connection 1o the source 0. Ann lives 60 kilo-
meters to the west of O, while Bob and Dave live in the same location, 60 kilometers to
the east of O. Thus Bob and Dave can share the same cable. If the cost of cable is $1
per kilometer, the pattern of stand-alone costs is precisely (5). The separation argument in
example 5.2 makes clear that Ann should pay her full stand-alone cost, whereas Bob and
Dave split the cost-saving (they each pay 30).

The point of the Shapley value is that we can deduce exactly the same cost shares from
the seven numbers, (5) and (6), without invoking a specific representation of the problem,
geographic or otherwise. The argument is that the marginal cost of serving Ann is 60, no
matter who among Bob and Dave is or is not served:

C(A) = C(AB) — C(B) = C(AD) — C(D) = C(ABD) — C(BD) =60

From these equalities the Shapley value assigns the cost share 60 to Ann. Since they play
symmetric roles in (5) and (6), Bob and Dave split equally the remaining cost of 60.

Now we introduce what seems like a small modification of the stand-alone costs of a
two-person coalitions (other costs being unchanged):

C(AB) =120, C(AD)=C(BD) =60 )

The coalitions {A, D} and {B, D} achieve a cost-saving of $60, whereas the coalition
{A, B} gets no saving whatsoever. Therefore Dave bears a larger share of responsibility for
the overall saving $60. Should all this saving be passed to him, who would then pay nothing
at all while Ann and Bob pay $60 each? That would be going too far, since Dave cannot
get service for free when he stands alone. He needs Ann or Bob to bring about the saving,
whence Ann and Bob must get some shares of it as well.

It is easy to represent the cost pattern (5) and (7) by a cable connection story. The three
agents live in the same location, connected to the source O by ared cable and a blue cable.
It costs $60 to rent either cable. Ann’s machine (resp. Bob’s) can only be connected via the
blue cable (resp. the red cable). Dave’s machine can use either cable, and two machines can
use the same cable.

Yet the story of the red and blue cables does not help because Dave’s responsibility in
the cost of the red cable depends in some way of his cost share of the blue cable, and vice
versa. There is no simple separation argument.

The Shapley value orders randomly Ann, Bob, and Dave, with equal probability on all
six orderings, and assigns to an agent his expected marginal cost. For instance, the ordering
B, A, D, yields the marginal costs

xp=C(B)=60, x4=C(AB)~C(B)=60, xp= C(ABD)—-C(AB)=0
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The six orderings and corresponding marginal costs are depicted in the following table:

Marginal  Cost shares

Ordering Ann Bob Dave
A,B,D 60 60 0
A,D,B 60 60 0
D,A,B 0 60 60
D, B A 60 0 60
B,D, A 60 60 0
B,A,D 60 60 0
Shapley value 50 50 20

where the last row of cost shares is the arithmetic average of the six rows above. Thus Dave
keeps of cost savings 60, while Bob and Ann gets ¢ L each.

In general, for a given ordering of N, the marginal cost of serving agent i is x; =
C(S U {i}) — C(S), where S is the set of agents preceding i in this ordering. The Shapley
value imputes to agent i the (arithmetic) average of her marginal costs over all orderings
of N.This share is her expected marginal cost when one of the n! orderings of N is chosen
at random (and with uniform probability over all orderings).

To write a precise formula for the Shapley value requires some combinatorial notations.
Given N = (1, 2, ..., n}, we write A; for the set of coalitions not containing agent i, and
A; (s) for the subset of A; containing the coalitions of size s (where s is a number between
0 and n — 1); thus for s = 0, A; is the empty set, and for s = n ~ 1 it contains the single
coalition N\(i}. The Shapley value charges the following cost share to agent i:

=3y 2= e uin - co) ®

s=0 S€A(s)

In this summation the coefficient s!(n — s — 1)!/n! is the probability that the coalition §
(of cardinality s) contains precisely all the agents preceding i in a random ordering of N.
For instance, this probability equals 1/ if S is empty (the probability that agent i comes
first in the ordering), equals 1/n if § = N\({i} (the probability that i comes last), equals
1/n(n — 1) if S = {j} (the probability that j comes first and i comes second), and so on.

The Shapley value formula is the single most influential contribution of the axiomatic
approach to distributive justice. Its applications are diverse and numerous, as the examples
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in the next two sections and the discussion of chapters 6 and 7 demonstrate. Its normative
Justifications are very solid, as explained in section 5.5,

In a two-person problem, the Shapley value assigns the cost shares (2), as one sees at
once by averaging marginal costs over the two orderings 1, 2 and 2, 1.

In a problem with three agents 1, 2, 3, formula (8) gives the following cost share for
agent 1:

x1 =300+ §(CU12) - C@) + LCU3) - CB3)) + 3(C(123) - C(23))

(¢)]
=1cU23)+ dcay +casy - 2023) + $2C(1) - C(2) - c@3))

Formula (9) also obtains by writing a table of marginal costs for the six ordering of 1, 2, 3
as we did in example 5.3, and averaging over the six rows.

We conclude this section by checking that in example 5.2, the Shapley value selects the
very cost shares derived from the separation argument.

The cost function takes the form

C(S) = maxc;
ieS
and c4 =20, cg =30, ¢p =90, cg=100, cf =110

Observe that in any ordering of {A, B, D, E, F), the marginal cost of Ann is $20 if she
comes up first, and zero otherwise; that of Bob is decomposed in two parts: $20 if he comes
up first, plus $10 if he is first among B, D, E, F (his marginal cost can be 30 or 10 or zero);
that of Dave is $20 if he is first in N plus $10 if he is first among B, D, E, F » plus $60 if
he is first among D, E, F; and so on. Therefore the $20 corresponding to the cost ¢4 are
shared equally among all five agents; the next $10 = ¢y — ¢4 are shared equally among
B, D, E, F; the next $60 = cp, — cp are shared equally among D, E, F, and so on, as in

example 5.2. This argument generalizes to any cost function C taking the form (3), and
gives the cost shares (4).

5.3 The Stand-alone Test and Stand-alone Core

A commons has subadditive costs if the production of the output (service to different agents)
is cheaper for a group of agents than it is for each agent separately: the joint production
brings positive externalities, cost savings that we must allocate amorng the participants. In
the formal model § — C(S) introduced in the previous section, the subadditivity property

says that for any two disjoint coalitions S » T, the stand-alone cost of S U T is not higher
than the sum of stand-alone costs of § and of T:

subadditivity: C(S U T)<C(S)+C(T) when Sand T are disjoint
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Applying this property repeatedly yields an inequality that has already been discussed in
examples 5.1 and 5.3: total cost is not larger than the sum of stand-alone costs:

CNy =) CH

ieN

Most examples discussed in this chapter involve subadditive costs (e.g., examples 5.2
through 5.8). However, the symmetric property of superadditive costs is also plausible.
There the production of output involves negative externalities so that the stand alone cost
of SUT is greater (at least, not smaller) than the sum of the stand-alone costs of S and T:

superaddivity: C(SUT) = C(S)+ C(T) when S and T are disjoint
= C(N) =) CG)

ieN

Under superadditive costs, serving a group of agents is more expensive than serving each
one separately.

Examples 5.1 offers a simple superadditive cost function. Many of the commons discussed
in chapter 6 have superadditive costs. The typical example is a commons involving conges-
tion, such as a pasture (example 6.2), a mine (example 6.6), or a queue (example 7.7). The
entire discussion of chapter 6 is articulated around the two polar cases of increasing marginal
costs (hence the superadditive cost function) and of decreasing marginal costs (hence the
subadditive cost function): the two cases are important and interestingly different.

The stand-alone test is a simple faimess property directly inspired by the properties of
sub- or superadditivity. It requires that everyone gets a share of the positive (resp. negative)
externality created by a sub- (resp. super-) additive cost function.

Stand-alone Test
C subadditive = x; < C(i)
C superadditive = x; > C(i)

The test says that when the externality from joint production is of a constant sign, it should
affect all the participating agents in the same direction.

Remarkably, the Shapley value meets the stand-alone test. To see this, recall the compu-
tation of the cost share x; as the expected marginal cost C(SU (i}) — C (S) of agent i, when
S is the random set of agents preceding i in formula (8). Sub- (resp. super-) additivity of C
gives
CESuU{ip - C(S) < Cl), resp. > C(i)

hence the claim.
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Figure 5.2

Mail distribution: Example 5.4

The stand-alone test is both compelling and easy to meet. Its generalization as the stand-
alone core property is natural, but much more demanding.

Example 5.4 A Variant of Example 5.2 The five villages of example 5.2 are now four,
and they are located along the single road starting at the source Q and passing successively
through A, B, D, and E. Distances a/2, b/2,d/2, e/2 correspond respectively to the in-
tervals QA, AB, BD, and DE; see figure 5.2. The cost function S — C(S) is computed
exactly as in example 5.2: the stand-alone cost C(S) is the length of the shortest roundtrip
starting at  and passing through all the locations in S. The Shapley division of total cost
C(N) =a + b+ d + e is deduced from the separation argument leading to formula (4):

b d a b d

a a
) xn—z+-3-, Xu—4—+§+5, x£—4+§+§+e

R

XA =

Assigning cost shares in proportion to stand-alone costs is prima facie a reasonable solution:

e = a+b+d+e 4. xn = a+b+d+e @+b)
A T darb+2dre P dat3brodte
a+b+d+e (@+b+d+e)?
= d, =
P itz e CTOF D xe Ya+3b+2d+e

The cost function is subadditive,* and the proportional solution obviously passes the
stand-alone test because every cost share is but a fraction of one’s stand-alone cost. On
the other hand, some coalition of agents may end up paying more than stand-alone cost.

For instance, if we choose @ = 10, b = d = 5, e = 50, the proportional cost shares are
computed as

x4 =6.09, xp=9.13, xp=1217, xg=4261
Thus § = {4, B, D) end up paying 27.39 or 37 percent more than their stand-alone cost
of 20. They are effectively subsidizing village E, which pays even less than the cost of the

4. The shortest trip stopping at every point of S U T is shorter than any two round-trips serving all points in S and
T respectively.




The Shapley Value

tour from D to E and back, for which E is solely responsible. Note that a similar argument
applies to §' = {4, B}, which end up paying 15.22, or about 1.5 percent more than their
stand-alone cost of 15.

The Shapley cost shares, on the other hand, never charge to a coalition S more than its
stand-alone cost. This is clear from the formula above, because the agents in a coalition S
pay only toward the cost of these segments that enter in the stand-alone cost of S.

The stand-alone core generalizes the stand-alone test to all coalitions of agents. Under
subadditive costs, it views the stand-alone cost C(S) as an upperbound on the total cost
share of §; under superadditive costs, it takes this number as a lower bound on the cost
imputed to §

Stand-alone Core

C subadditive = ) x;

ieS

<C(S) foral SC N

C superadditive =5 ) x; > C(S)

ieS

foralSC N

The stand-alone core property is often interpreted as a bargaining argument (private
contract) when the cost is subadditive. Suppose that any coalition S can form and use freely
the technology C as it pleases (in particular, agents in N\ S cannot object to, or block in any
way, §’s production plan). Because the cost function C is subadditive, it is always efficient
to use a single copy of the technology C to serve everyone. However, coalition S can use its
stand-alone options as a disagreement outcome (as in section 3.6), rejecting accordingly any
profile of cost shares (x;) where it is charged more than C(S). This argument only applies
to a subadditive cost function. Even then, it must be taken with a grain of salt because the
core property may prove altogether impossible to meet (see example 5.8).

In the rest of this section we show that the bite of the stand-alone core property varies
wildly from one specification of the cost function to the next. In examples 5.4 and 5.5
the property cuts a large set of acceptable cost shares, among which the Shapley value is
normally to be found; in another case (example 5.6) the core property cuts a very small set
(even a singleton, example 5.7) of cost shares, and in this case the Shapley value is typically
not in the core. Finally the stand-alone core property may be altogether too demanding,
despite the sub- or superadditivity of the cost function (example 5.8).

Example 5.5 Another Mail Distribution Problem The road network depicted on fig-
ure 5.3 shows the source (post office) at 2 and the three customers Ann, Bob, and Dave.
The network is more complicated than in examples 5.2 and 5.4, but the problem is the same:
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Figure 5.3
Mail distribution: Example 5.5

How should we divide the total cost of the daily tour between the three customers? The
separability argument used in examples 5.2 and 5.4 does not apply here: we cannot allocate
separately the cost of the various intervals of the network.

The shortest tour visiting A, B, and D goes from Q successively to A, D, B, and back
to £2 for a total cost

C(A,B,D)=10+8+8+10=136

The stand-alone cost of A is 20 (going from £2 to A and back) as is that of B, whereas it
takes a full $36 to visit D:

C(A)=C(B)=20, C(D)=36

Similar computations yield the stand-alone costs of two agents coalitions. For instance,
the shortest tour passing through A and B costs 10 + 9 + 10 = 29:

C(AB) =29, C(AD)=C(BD)=136

The cost function C is subadditive as C(ij) < C(i) + C(j)and C(ABC) = C(i) + C(jk)
for all combinations of (i, j, k} = {A, B, D}. The stand-alone core property places the
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following bounds on the cost shares x4, x5, xc:
x4, x5 <20; xp <36
Xoa+xp =229 xi+xp,xp+xp<36

In view of the equality x4 + x3 + xp = 36, these six inequalities can be written in a
more compact way:

0=<x4520, 0<x3<20, 7<xp<30

This system cuts a large subset of acceptable cost shares x, and falls very short of recom-
mending a precise compromise between the share imputed to D, on one hand, and A, B,
on the other hand.

If we respect the symmetry between A and B, we may at one extreme favor A, B against
D as far as x4 = x5 =0, xp =36; at the other extreme, x4 =xp = 14.5, xp =7 is still in
the stand-alone core. And we may also break the symmetry between A and B, for instance,
xa =0, xg =20, xp=16.

Given the loose constraints imposed by the stand-alone core property, if is not surprising
that the Shapley value passes this test. This solution is computed with the help of (9) as

xi=xp =817, x})=19.67

The next example starts from the same set of users on the same road network as exam-
ple 5.5 but modifies the technology for providing service to these users. Instead of running
a daily tour of all users, it is now necessary to run along the existing roads the shortest cable
that will connect them to the source.

For the road network of example 5.2, depicted on figure 5.1, the length of the shortest
cable joining the source 2 to the five locations A, B, D, E, F is exactly half that of a
tour visiting them all; the same applies to any subset of locations. Thus the cost-sharing
games “mail distribution” and “access to a network” are isomorphic (up to a factor of 2) for
this road network.’ By contrast in the case of the network of fi gure 5.3, the two technologies

yield very different patterns of stand-alone costs; in the access problem, the stand-alone
core shrinks to a small set.

Example 5.6 Access to a Network The three customers Ann, Bob, and Dave need to be
connected to a network with its source at Q. In order to connect Q to A, B, D—or to any
subset of these three—the shortest feasible cable will be used along the links of the network
of figure 5.3. The cost of a connection is the total length of the cable.

5. Exercise 5.7 generalizes this observation to all “tree” networks, meaning all networks without cycles.




Thus, in order to connect Ann alone, we need a cable between 2 and A for a stand-alone
cost C(A) = 10. In order to connect Ann and Bob, we run a cable from © to A and from A
to B (or from Q to B and B to A) for a total cost C(AB)=19. The shortest cable connecting
A, B, and D uses three links QA, AD, and DB (or 2B, BD, and DA), and so on. Hence
we have the cost function

CA)=C(B)=10, C(D)=18
C(AB)=19, C(AD)=C(BD)=18, C(ABD) =26

As in the previous example this cost function is subadditive. But unlike in that example, the
stand-alone core property cuts a very small subset of cost shares:

xa <10 and {XB+XD518§XA28}

where the implication follows from the budget balance condition Xs+xg+xp = 26. Thus
x4 and, by symmetry, xp are between 8 and 10. Similarly

Xa+xp <19 xp>17, X4, xp > 8=>xp <10

To sum up, a triple of cost shares x4, xz, xp is in the stand-alone core if (and only if) it
meets the following system:

8<x4,xp <10, 7<xp=<10, xg+x5+xp=26

The cost-sharing most advantageous to Ann and Bob (and treating them equally) is x4 =
xp = 8, xp = 10; the least advantageous is x4 = x3 = 9.5, xp = 7. A good compromise
isx4 =XB =9,xD =8.

The logic of the Shapley value solution is very different, and indeed the cost shares it
recommends do not meet the stand-alone core property:

xy=xp=175 xp=11

In our next example the stand-alone core contains a single set of cost shares, yet this
unique allocation is not convincing.

Example 5.7 Example 5.3 Continued Consider the three-person cost-sharing example
given by (5) and (7), which we repeat for convenience:

C(ABD) =120, C(i) =60 fori=A,B,D
C(AB) =120, C(AD)=C(BD) =60

These costs are subadditive. The Shapley value was computedas x4 = xz = 50, xp = 20.1t
fails the stand-alone core property by virtue of an objection of § = {A, D) (or (B, D}): they

5.3 Stand-alone Test and Stand-alone Core
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can ignore Bob and split their own stand-alone cost of 60 as x; = 45, x, = 15, from which
they both benefit. Now Bob can offer an even better deal to Dave, say x3 = 50, x5 = 10: this
deal is feasible to Bob and Dave standing alone, and better for Bob than being left in the cold.

The bidding for Dave's cooperation does not stop here: Ann can offer an even better deal
to Dave (e.g., x{' = 55, xp = 5), and so on. The only resting point of the bidding war is
when Dave has extracted the entire surplus: indeed, the unique vector of cost shares in the
stand-alone core is x4 = xp = 60, xp = 0. This allocation may be plausible if Dave plays
Ann against Bob, who never think of colluding against Dave. But it is not a plausibly fair
division of the cooperative surplus, of which all the credit cannot go to Dave.

The next example is a subadditive cost function where the stand-alone core property is
logically impossible.

Example 5.8 Buying a Software Ann, Bob, and Dave want to purchase software to meet
certain word-processing needs. There is no shortage of software on the market, but not all
are compatible with either of their computers, nor do they fill all their needs.

After carefully studying the market, our partners have located four software products:

Software product Satisfactory for Cost

X Ann, Dave $800
Y Bob, Dave $900
A Ann, Bob $1,000
E Ann, Bob, Dave $1,700

Every other software product is dominated by one of these four products. Software S is

dominated by S’ if S’ is not more expensive than S, if it satisfies at least the same needs, and

if at least one of these two comparisons is strict. The cheapest software meeting Ann’s needs

costs $800, which is Ann’s stand-alone cost. Similarly C(B) = 900 and C(D) = 800.
Computing the Shapley value with the help of (9), we find that

x3y =550, xp =650, xp =500

On the other hand, the stand-alone core property yields a logically impossible system of
three inequalities and one equality:

x4+ x5 <1,000, x44xp <800, xp+ xp <900
and
xa+ xg+xp=1700

Adding the three inequalities yields x4 + x5 + xp < 1,350, a contradiction.
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A natural solution in the spirit of these (out of reach) inequalities is this profile of cost
shares where each inequality is violated by the same amount, namely

X4+xg—1,000=x4 +xp—800=xz+xp — 900
This system—together with the constraint that total cost is $1,700—yields the cost shares:
x4 =567, xg =667, xp=467

which are not too different from the Shapley value, although the spread xg —x p has increased
to $200.

In cooperative game theary the two ideas of the Shapley value and the stand-alone core
have been studied for general cost or surplus functions § — C(S) (cooperative games with
transferable utility). The feasibility of the stand-alone core property and the relation between
the Shapley value and the stand-alone core have been investigated with full mathematical
generality.

Finally, a couple of solutions selecting, for any cost function, a central point within the
stand-alone core (or in the spirit of the stand-alone inequalities if the core is empty) have
been constructed: example 5.8 provides an illustration.

Our last example is meant to remind us of one great advantage of the Shapley value,
namely that it applies equally well to a cost function that is neither sub- nor superadditive.
For such a cost function, even the stand-alone test ceases to make sense.

Example5.9 Location ofa Post Office  'We modify example 5.2 by allowing the five agents
to choose the Jocation of the post office anywhere on the road network (as in examples 3.4
and 3.8) and the cost to be shared is that of the daily delivery tour starting from the post
office and passing through all relevant customers.

Thus in the network of example 5.2 (figure 5.1) any location between A and F is efficient:
the corresponding tour costs C(ABDE F) =90. Similarly C(ABDE) = 80, C (BE)=170,
and so on. This cost function is neither sub- nor superadditive because

C(ABDE) = 80> 10+ 10 = C(AB) + C(DE)
C(ABDE) = 80 < 70+ 70 = C(AD) + C(BE)

Thus the logic of the stand-alone core does not apply.

The Shapley value, on the other hand, suggests a judicious way to cut through the thorny
pattern of externalities. Direct computation of this solution as the expected marginal cost is
tedious—there are 120 orderings of five agents—but an argument based on the additivity
property of the value (section 5.5) delivers the answer almost at once.
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Consider the cost 60 of the interval B D (each interval is traveled on twice). In a random
ordering of the five agents if will be imputed to one of A, B if (and only if)one of D, E, F
is drawn first, and to one of D, E, F if (and only if) one of A, B is drawn first. As the agents
A, B are equal in this subproblem (i.e., the costsharing of the interval B D), they receive

an equal expected share, and D, E, F are treated equally as well. Thus the cost of interval
BD is divided as

3
A, B each pay :21--5-60=$18

D,E,F eachpay -60 = $8

l
LIl S

Similar computations for each of the four intervals give

Intervals A B D E F Total cost
AB 8 0.5 0.5 0.5 0.5 10
BD 18 18 8 8 8 60
DE 1.33 1.33 1.33 3 3 10
EF 0.5 0.5 0.5 0.5 8 10

Shapley value  27.83 2033 1033 12 195 90

Exercise 5.7 generalizes this decomposition argument.
5.4 Stand-alone Surplus

We illustrate the versatility of the surplus-sharing model, defined by a pair (N, v) where
the function v associates to every coalition S in N a “surplus” v(S). To interpret v(S), we
go through the Gedank experiment where the agents in S cooperate, and use efficiently
the resources they control. This results in a net benefit v(S), the stand-alone surplus of
coalition S that can be distributed as easily as money among the members of S. Animportant
assumption is that individual utilities are measured in a common numéraire (e.g., cash) that
is freely transferable across agents, and moreover the marginal utility of the numéraire is
constant (utility is linear in money).

The key to the construction above is to define what resources the agents in S control when
they stand alone. Depending on the context this control is derived from “real” property rights
or from “virtual” ones. The exchange of private goods under private ownership (discussed
in sections 7.1 and 7.2) is a case where the property rights are real: agents in S are free to
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trade among themselves; the corresponding stand-alone core property is thus interpreted
as a positive statement about the stability of private contracts. On the other hand, in most
instances of the commons problems (chapter 6), the stand-alone surplus represents a virtual
appropriation of the technology by a certain coalition: this surplus is nevertheless relevant to
the normative discussion, and the application of a general solution like the Shapley value is
vindicated. In the “mail distribution” stories (examples 5.2, 5.5, and 5.9) a coalition of agents
isnotlegally able to dismiss the agents outside the coalition, but doing so as a thought experi-
ment is a good way to untangle the web of mutual externalities. The public contract concerns
all agents in N without dropping anyone, but it is fair by reference to what would happen
if some agents were dropped. This interpretation pervades this chapter and the next one.

Example 5.10 Example 5.5 Revisited Asin example 5.5 the problem is to share the cost
of mail delivery on the road network of figure 5.3. The difference is that we now take into
account how much each agent is willing to pay for to receive mail everyday. Specifically
we assume that

Ug = $18, Ug = $ll, Up = $16

We compute the surplus function § — v(S) for each one of the seven coalitions in
{A, B, D}. A single agent is not willing to pay for his own stand-alone cost (1, = 18 <
20 = C(A), etc.); therefore v(i) = Ofori = A, B, D. Similarly any two agents’ coalition
is unable to achieve a positive surplus

s +upg =29<29=C(AB)
s +up =34 <36 =C(AD)
up+up =27 <36 =C(BD)

therefore v(ij) = 0 for all two-person coalitions. Now efficiency commands to serve all
three agents as C(ABD) = 36 < 45 = u, + up + up; therefore v(ABD) = 9.

The surplus function is thus very simple: all three agents are equal hence the Shapley
value (or any solution treating equals equally; see section 5.5) declares that each one should
receive $3 of surplus, which amounts to the following cost shares:

x,q=15, X3=8, xD=l3

Compare these with the cost shares in example 5.5: now Ann is paying the biggest share,
whereas Bob gets a rebate. Consideration of the net benefits turns the analysis on its head.

Notice that for some other choices of the willingness to pay, the surplus-sharing ap-
proach leads to virtually the same recommendation as in example 5.5: exercises 5.2 gives
an example.
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Our next example illustrates an important features of the stand-alone surplus compu-
tations: a coalition S standing alone may maximize its surplus by serving only a subset
of S.

Example 5.11 Example 5.6 Revisited The problem is to share the cost of a cable con-
necting A, B, and D to the source and following the links of the network of figure 5.3. We
now assume the following willingness to pay for connection to the network:

Up = $12, Up =$8. Up = $12

Ann would pay for a connection if she was standing alone, and her net surplus would be
v(A) = 2. Neither Bob nor Dave would buy a connection on their own: v(B) = v(D) = 0. .
Efficiency allows to connect only Ann and Dave, for a net surplus 12 + 12 — 18 = 6 or all
three agents for the same net surplus. Therefore :

v(AD) =v(ABD)=6
The coalition AB standing alone would not include Bob:
us+ug—C(AB)=1<2=uy—-C(A)
hence
v(A)=v(AB) =2

On the other hand, the coalition BD would gladly pay to connect both agents, for a surplus
v(BD)=8+12-18=2. '

The surplus function v just computed is superadditive, as the reader can easily verify.
The stand-alone property requires to deny any positive share of surplus to Bob:

{(ya+yp=6=ys+ys+yp and yg>0} imply yz=0
Ann and Dave share the surplus along the following guidelines:
2<ya=<4, 2<yp=<4, yatyp=6

The Shapley value takes a sharply different view point to distribute the six units of surplus.
Bob is entitled to a positive share of surplus because he contributes a positive amount while
working with Dave: v(BD) > v(D). Therefore his marginal contribution is 2 whenever the
ordering drawnis D, B, A. Compute the Shapley surplus shares with the help of formula (9),
where cost is replaced by surplus

ya= 3.33, Y = 0.33, Y= 2.33
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If all three agents are connected, the cost shares are
xas =8.67, xp=7.67, xp=9.67

If only Ann and Dave are connected, Bob deserves a small cash compensation of 33cts for
stepping aside and the other two agents pay:

xy =8.67, xp =967

which covers the cost of connecting them, plus 33cts for Bob.

*5.5 Axiomatizations of the Shapley Value

The Shapley value has been axiomatically characterized in a number of ways, of which four
are presented below.

A cost (or surplus) sharing problem is a pair (N, C) where N is a finite set of agents and
C associates to each nonempty coalition S a real number C(S). A solution associates to any
such problem (N, C) a profile x = y(N, C) such that

x=(x)iex and Y x=C(N)
ieN

The original characterization (due to Shapley) uses three axioms: equal treamment of
equals, dummy, and additivity.

Equal treatment is the translation of equal exogenous rights (section 2.1) in the cost-
sharing problem. We say that agents i and j are equal with respect to (N, C) if C(SU {i)) =
C(S U {j)) for any set S in N containing neither i nor j (including the empty set).

Equal Treatment of Equals If i, j are equal w.r.t. (N, C), then ¥;(N, C) = yi(N,C).

The dummy axiom is normatively the most important of the three because no other axiom
conveys the reward principle. Dummy does so in a fairly convincing way, by considering
an agent for which the marginal cost of joining any coalition S is zero. Say that agent i is a
dummy in problem (N, C) if we have

3C(S)=CEUi-CS =0 forallSC N

Note that for a coalition § already containing agent i, the marginal cost 8;C(S) is zero by
definition; therefore the property above has bite only for the coalitions S in 4; (i.e., not
containing i).

The dummy axiom requires that a dummy agent pays nothing:

{3;C(S)=0forall S} = (N, C)=0
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The third axiom, additivity, is the most mathematically demanding, and is motivated as a
decentralization property. Consider a cost function C made up of two independent costs
Cli=1,2:C(5) = C'(S) + C*(S) for all S. For instance, if the service provided to the
agent is cable TV, C' may represent the (one-time) cost of installing the cable connection
and C? the variable costs of the cable company (e.g., maintenance cost of the line). The
additivity axiom requires the cost shares to depend additively on the cost function:

YN, C'+CH=y(N,CY +y(N, CYH

Shapley’s original characterization result says that the Shapley value is the only solution
meeting the three axioms equal treatment of equals, dummy, and additivity. We provide the
main idea of the proof by looking, once again, at example 5.2.

We define five subproblems, the sum of which is the initial cost-sharing problem:

CA(S) =20forall § #0

C8(S) =10forall $s.t. SN (B, D, E, F} # @; zero otherwise
CP(S) =60 forall Ss.t. SN{D, E, F} # @; zero otherwise
CE(S) = 10 forall S s.t. SN (E, F} # @, zero otherwise
C*(S) = 10 for all S containing F; zero otherwise

Check first that the cost function C given by (3) is precisely C = C4 +C?® +CP + CE +
C¥. Next consider one of the subproblems, say CP. Here agents A and B are dummies,
and moreover D, E, and F are equal with respect to C2. Therefore equal treatment and
dummy imply that A and B pay nothing and D, E, F share equally the cost C2(N) = 60.
Repeating this argument, we find that the cost of C4 is shared equally among all agents, that
of C# among B, D, E, F, and so on. In turn the additivity property yields the cost shares
computed in examples 5.2.

The next characterization of the Shapley value replaces the dummy and additivity axiom
by a single property called

Marginalism For any two games (N, C'), (N, C*) and any agent i,
(3:C'(8) = ;C%(S) for all $} = {yi(N, C') = yi(N, C))

This says that agent i’s cost share y;(N, C) depends only on the list 8; C(S) of his marginal
contributions to all coalitions S.

It is easy to check that the only marginalist and symmetric solution for two-person
problems is the Shapley value (8). Indeed, such a solution takes the form

n=f(CM),CU2)-CQ), y:= f(C(2),C(12) - C(1))
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for some function £. The budget balance gives the following equation, upon using the letter
variables x, y, z for C(1), C(2), C(12):

fxz=y+f(r.z—x)=zforallx,y,z

It is a simple mathematical exercise to deduce that flx,x) = %(x +x’) and the announced
result for two-person problems.

To sum up, the Shapley value is the only solution for cooperative games satisfying
{dummy, additivity, and equal treatment} or {marginalism and equal treatment}. All of the
results discussed so far involve a fixed set N of agents, also called a fixed population. By
contrast, the next two characterizations rely on variable population axioms. Given a game
(N, C) we denote by (N\i, C~) the restriction of this game to the subset N\i, namely
C~{(8) = C(S) for all § contained in N\i.

Equal Impact The impact of removing agent j on agent i’s share is the same as that of
removing agent i on agent j's share:

YitN, C) = yi(N\j, C7/) = y;(N, C) — y;(N\i, C™)

Equal impact, unlike additivity, is a fairness statement. Additivity is a structural invariance
property. Marginalism is somewhere in between.
Related to Equal Impact, we have the following axiom:

Potential There exists a real-valued function P(N, C), defined for all cooperative games
(N, C), such that

¥i(N,C) = P(N,C) — P(N\i,C™) forall N,i, C

The Shapley value is the only solution satisfying potential; it is the only solution satisfying
equal impact. Both results follow an easy induction argument on the size n of N: the
statements are obvious forn = 2 once we note that y; ({i}, C) = C (i) and posit P(@, C) =0.

Thus the latter two results are closer to providing a constructive algorithm for deriv-
ing the Shapley value than a genuine axiomatization from first principles, like the two
characterizations described earlier.

We note finally that the cost-sharing methodology leading to the Shapley value can take
into account unequal exogeneous rights.

If we remove the equal treatment requirement, the interesting class of random order
values emerges. For each ordering o of N, the o marginal contribution solution y° charges
agent their marginal cost y?(N,C) = 8C(S) where S is the set of agents preced-
ing i in o. For instance, if ¢ = {2,4,5, 1, 3}, we have y7 (N,C)=C(42) - C(2);
Yi (N, C) = C(1245) — C(245); and so on. Each solution v meets dummy, additivity, and
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marginalism. The same holds true for any convex combination of these solutions provided
that the coefficients of the combination are constant: these solutions are the random order
values.

Each random order value computes cost shares by (1) drawing at random an ordering o in
a lottery over orderings that does not depend on the particular function C and (2) charging
o marginal contributions. The family of all the random order values is characterized by
either dummy + additivity or, essentially, marginalism.

5.6 Introduction to the Literature

The normative analysis of a “value,” which is a fair compromise in the kind of cost- or
surplus-sharing problems discussed in this chapter, is one-half of the theory of cooperative
games with transferable utility. The other half is the strategic analysis of coalition formation,
and is not relevant to this book.

A number of textbook presentations of value theory are available: Owen (1982, chs. 10,
11), Moulin (1988, ch. 5), and Young (1994, ch. 5). The common theme, as in this chapter,
is to contrast the additivity axiom leading to the Shapley value, with the stand-alone core
requirement (interpreted as a normative principle of no subsidization). The latter leads to a
value called the nucleolus (Schmeidler 1969), which is technically more complicated and
normatively less compelling than the Shapley value; we only allude to the nucleolus, a
central point in the stand-alone core, in example 5.8.

On the other hand, our choice of examples emphasizes the versatility of the cooperative
game model, and in this respect it takes inspiration from an important methodological paper
by Shubik (1962), and from a variety of applications to specific problems of joint costs, for
instance, Thomas (1980). Example 5.2 originates in Littlechild and Owen (1973), who were
the first to compute the Shapley value of the capacity cost function (3), in the problem of
allocating airport landing fees. The subsequent literature on minimal cost spanning trees in
networks can be viewed as a generalization of the airport game: it inspires our examples 5.5,
5.6,5.9, and 5.11. Sharkey (1995) is an excellent survey of the relevant literature.

Many authors have contributed to the multiple axiomatic characterizations of the
Shapley value reviewed in section 5.5. The seminal paper is Shapley (1953). The marginal-
ist characterization is due to Loehman and Whinston (1974) and Young (1985); see also
Chun (1989). The equal impact characterization is due to Myerson (1977), and that by the
potential function to Hart and Mas-Colell (1989). The original characterization of random
order values is due to Weber (1988), and the one based on marginalism to Khmelnitskaya
(1999). The special relation between the Shapley value and the stand-alone core in concave
cost-sharing games is due to Shapley (1971): see exercise 5.9.
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Finally, a collection of essays is devoted exclusively to the Shapley value. Roth (1988)
is still a useful introduction to the many applications and variants of this concept.

Exercises to Chapter §

Exercise 5.1 Traveling Lecturer

A lecturer will visit Chicago, New York, and Washington from his home base in Boston.
The cost of the round-trip of all six partial trips to a single city or a pair of cities is as
follows:

Chicago 400 Chicago and New York 450
New York 300 Chicago and Washington 500
Washington 300 New York and Washington 300

Chicago, New York, and Washington 600

a. Check that the cost function is subadditive.

b. How should the three sponsors of the trip, based in the three cities he will visit, split the
total cost according to the Shapley value?

¢. Show that the stand-alone core property is feasible in this example, and that the Shapley
value does not meet this property.

d. We modify the cost function as follows:

Chicago and New York 400
Chicago and Washington 450
New York and Washington 300

Other stand-alone costs are unchanged. Check subadditivity, and show that now the stand-
alone core is empty. Compute the Shapley value.

Exercise 5.2 Variant of Example 5.10

Assume a common willingness to pay of $18 for all three agents. Compute the stand-alone
surplus function § — v(S) as in example 5.10. Check that v is superadditive and compute
the division of v(A B D) recommended by the Shapley value. Compare the corresponding
cost shares with those found in example 5.5. Does the Shapley value surplus division meet
the stand alone core property (for the superadditive function »)?
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Exercise 5.3 Variant of Example 5.11

Assume a common willingness to pay $10. Answer the same questions as in the previous
exercise (where the comparison is with the cost shares found in example 5.6).

Exercise 5.4 Surplus-Sharing Variant of Example 5.8

Each agent is willing to pay $700 for an adequate software.

Compute the superadditive surplus function S — v(S). Check, in particular, that the
efficient production plan leaves Bob with no software.

Compute the Shapley value and show that it awards a cash transfer to Bob, as a com-

pensation for stepping aside (as in example 5.11). Is the stand-alone core property (for the
superadditive function v) feasible or not?

Exercise 5.5 Variant of Example 5.8

Four softwares a, b, ¢, d are available on the market, at a price of $100 each. Four agents

want to combine their purchase of a couple of these softwares, so as to meet their specific
needs.

Software a meets the needs of Ann and Bob; software b, that of Bob and Emily; software
¢, that of Ann and Dave; software 4, that of Ann and Emily. Thus the cheapest way to meet

all individual needs is to buy 5 and ¢ for $200. The issue is to divide fairly this cost between
the four agents.

a. Compute the stand-alone costs of all 14 coalitions and check the subadditivity property.

b. Compute the cost shares recommended by the Shapley value. Are they in the stand-alone
core?

Exercise 5.6

Ann, Bob, and Dave share the cost of hooking up to a network. Their willingness to pay for
this service is

Ann Bob Dave
60 50 40

The (stand-alone) costs of hooking the various subsets of agents are
C(A) =C(B) =50, C(D)=60
C(AB) = C(AD) = 70, C(BD) =60
C(ABD) = 100 '




Exercises to Chapter 5

a. Ignoring first the willingness to pay, compute the cost shares recommended by Shapley
value. Check that it is not in the stand-alone core. Show that the stand-alone core contains
a unique set of cost shares and compute it.

b. From now on we take the willingness to pay into account. Compute the surplus function
and show that efficiency requires serving all three agents.

¢. Compute the Shapley value of the surplus function and compute the, again unique,
allocation in the stand-alone core. Compare the cost shares proposed by these two solutions
with the two found in question a by ignoring the willingness to pay.

Exercise 5.7 Tree Networks

A tree is a graph where all nodes are connected and there are no cycles. The agents live
on certain nodes of the tree and to each edge (a link between two nodes) is attached a
cost, building or maintenance cost. The tree on figure 5.4 has five agents living in different
nodes and the source marked 2. Example 5.2 is another example where the tree is a simple
line.

a. Consider the mail distribution problem (as in examples 5.2 and 5.5) for the tree of
figure 5.4. Check that the total cost of a tour serving all agents is twice the sum of the costs
of all edges. Compute the cost shares recommended by the Shapley value, by mimicking
the separability argument used in example 5.2.
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The Shapley Value

b. Consider the problem “access to the network” as in example 5.6: the cost of serving a
given coalition S is the total cost of the smallest subtree connecting the source to all agents
in §. Check that the cost function to this problem is exactly one half of the cost function
for the mail distribution problem so that the two problems are identical.

¢. Suppose, as in example 5.9, that there is no assigned source and each coalition standing
alone will locate the source so as to minimize the cost of a tour (or, equivalently, the cost
of a subtree connecting everyone in the coalition to the source). Total cost is the same as in
question a but some of the stand-alone costs are different. Compute the Shapley value, by
mimicking the separability argument used in example 5.9,

*d. Generalize the computation of the Shapley value in questions a and ¢ to an arbitrary
tree where one or several agents can live on any one of the nodes.

Exercise 5.8

Consider the network depicted in figure 5.5, showing the three agents A, B, D, the source
£2 and the cost of each edge.

a. Compute the subadditive cost function of the “mail distribution” problem with source
as in examples 5.2 and 5.5. Compute the Shapley value profile of cost shares. Does it meet
the stand-alone core property?

b. Compute the subadditive cost function of the “access to the network” problem with
source £2 as in example 5.6. Show that the stand-alone core js empty.

c. Now, as in example 5.9 and question ¢ of exercise 5 -7, the agents can locate a post office
anywhere on the network of figure 5.5 so as to minimize the cost of delivering mail to ali
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Exercises to Chapter 5
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Network for exercise 5.9

of them. Note that the point  has no longer any special meaning, yet the inner network
through 2 can be used to locate the post office. Compute the stand-alone cost function and
check it is neither super- nor subadditive. Compute the Shapley value.

Exercise 5.9
Consider the four agents network depicted in figure 5.6.

a. Compute the cost function of the mail distribution problem when each coalition can
choose freely the location of the source (as in example 5.9). Note that agents A, B play
symmetric roles, as do D, E. Therefore one only needs to compute eight costs, correspond-
ing to coalitions A, D, AB, DE, AD, ABD, ADE, and ABDE.

b. Compute the cost shares recommended by the Shapley value. (Hint: Use the symmetries
of the problem.)

c. Consider the “access to a network” problem without a fixed source (as in example 5.9).
Thus the cost of a given coalition S is that of the cheapest set of edges connecting all agents
in S. Check that the cost function is neither super- nor subadditive. Compute the Shapley
value.

d. Now the source 2 is fixed midway on the edge joining Ann and Bob. Compute the cost
functions in the “mail distribution” (example 5.5) and “access to a network” (example 5.6)
versions. Compare with the functions computed in questions a and c above. Finally compute
in both cases the Shapley value.

*Exercise 5.10 Concave Cost Functions

A cost function C is called concave if the marginal cost C(S U i) — C(S) decreases as the
coalition S enlarges. For all coalitions S, T,

SCT=C(Ui)-C(S) = C(TUi) —C(T)




The Shapley Value

a. For a three-person subadditive cost function, check that concavity is equivalent to three
inequalities:

C2)+C@23)=C(123)+C(2)

and two other inequalities by exchanging the role of the agents. Deduce that the cost function
in example 5.5 is concave, but that in example 5.6 is not.

b. Show that the cost function in example 5.2 is concave. More generally, a cost function
taking the form (3) is concave.

*c. Fix an arbitrary concave cost function C and an ordering of N, say 1,2, ..., n. Show
that the corresponding profile of marginal costs

x1=0C(l), x2=C(12)—~C(), x3=C(123) - C(12),...,x,=C(N) — C(N\n)

meets the stand-alone core property. Deduce that the Shapley value meets this property as
well.

The property above explains why the stand-alone core of a concave cost function is
“large.” It can be shown that the stand-alone core equals the set of all convex combinations
of the marginal cost vectors.




